Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Phytochemistry ; 221: 114066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494085

RESUMO

A bichalconoid, globunoid A (1) and three biflavanones, globunoids B-D (2-4), previously undescribed, were isolated from the stems of Knema globularia, along with fourteen known analogues 5-18. The chemical structures of 1-4 were elucidated by the comprehensive spectroscopic analysis including UV, IR, HRESIMS, and NMR; the absolute configurations were determined based on their NOESY data, DP4+ statistical analysis, and ECD calculation. Up to now, compounds 2 and 3 represent the first 3,3″-linked biflavanone structures. Among the isolated compounds, 2, 3, and 2,3-dihydrocalodenin B (6) potently inhibited α-glucosidase and α-amylase activities, with IC50 values in the range 1.1-7.5 µM. Furthermore, the most active compound 6 was found to be a non-competitive inhibitor against these two enzymes.


Assuntos
Plantaginaceae , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases , Extratos Vegetais/química
2.
Fitoterapia ; 173: 105784, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128621

RESUMO

The SARS-CoV-2 mutation and the limitation of the approved drug against COVID-19 are still a challenge in many country healthcare systems and need to be affronted despite the set of vaccines to prevent this viral infection. To contribute to the identification of new antiviral agents, the present study focused on natural products from an edible fruit with potential inhibitory effects against the SARS-CoV-2 main protease (Mpro). First, LC-ESIMS analysis of Platonia insignis fruits was performed and showed the presence of biflavonoids and benzophenones in the seed and pulp, respectively. Then, maceration and chromatographic purification led to the identification of two triglycerides (1 and 2) alongside chamaejasmine (3) and volkensiflavone (4) from the seed and isogarcinol (5) and cycloxanthochymol (6), from the pulp. Compounds 1-6 after evaluating their inhibitory against Mpro, displayed from no to significant activity. Compound 5 was the most potent with an IC50 value of 0.72 µM and was more active than the positive control, Ebselen (IC50 of 3.4 µM). It displayed weak and no cytotoxicity against THP-1 (CC50 of 116.2 µM) and Vero cell lines, respectively. Other active compounds showed no cytotoxicity against THP-1. and Vero cell lines. Molecular docking studies revealed interactions in the catalytic pocket between compound 5 and amino acid residues that composed the catalytic dyads (His 41 and Cyst 145).


Assuntos
Biflavonoides , Frutas , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Benzofenonas , Biflavonoides/farmacologia , Estrutura Molecular , Peptídeo Hidrolases
3.
Heliyon ; 9(11): e21896, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034670

RESUMO

Garcinia lucida is used in Cameroonian folk medicine to handle a variety of ailments, including arterial hypertension. This study aimed at determining the phytochemical profile and the antihypertensive effect of the stem bark aqueous extract of G. lucida (AEGL). AEGL was subjected to LC-MS analysis, and its effect (75, 150, and 300 mg/kg/day; by gavage) was evaluated against Nω-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg)-induced hypertension in adult male Wistar rats for four consecutive weeks. Blood pressure and heart rate were monitored weekly using tail-cuff plethysmography. The vasorelaxant effect of cumulative concentrations (3-10-30-100-300 µg/mL) of AEGL was examined on endothelium-intact and denuded thoracic aorta rings which were precontracted with KCl (90 mM) or norepinephrine (NE; 10-5 M), and in the absence or presence of L-NAME (10-4 M), indomethacin (10-5 M), methylene blue (10-6 M), tetraethylammonium (TEA, 5 × 10-6 M), glibenclamide (10 × 10-6 M) or propranolol (5 × 10-6 M). The influence of AEGL on the response to NE, KCl, and CaCl2 was also investigated. Six compounds, including Garcinia biflavonoids GB1 and GB2, were identified. AEGL prevented the development of hypertension (p < 0.01 and p < 0.001) without affecting the heart rate. AEGL induced a concentration-dependent relaxation of aortic rings precontracted with NE (EC50 = 7.915 µg/mL) that was significantly inhibited by the removal of the endothelium, L-NAME, or methylene blue (p < 0.05-0.001). Indomethacin, propranolol, TEA, and glibenclamide did not affect AEGL-evoked vasorelaxation. Preincubation of aortic rings with AEGL reduced the magnitude of contraction elicited by CaCl2 but did not alter that of KCl or NE. AEGL possesses an antihypertensive effect that is mediated by both endothelium-dependent and endothelium-independent mechanisms. The activation of the NO/sGC/cGMP pathway accounts for the endothelium-dependent vasorelaxation. These pharmacological effects of AEGL could be attributed to the presence of the Garcinia biflavonoids GB1 and GB2.

4.
Int J Biol Macromol ; 253(Pt 7): 127380, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838108

RESUMO

Biflavonoids (BFs) are a group of polyphenols that have a unique biochemical structure. One of the key biomedical mechanisms that BFs can have high potential in managing Diabetes mellitus (DM) is α-glucosidase inhibition. Normally, elevated blood glucose levels are caused by high absorption of glucose in the epithelium of the small intestine. Since α-glucosidase helps increase the absorption of glucose in the small intestine in the final stage of glycan catabolism, inhibition of this essential biochemical process in diabetic patients can be considered a suitable approach in the treatment of this disease. The interaction between the BFs and α-glucosidase are still not clear, and need to be deeply investigated. Herein, the aim is to identify BFs with strong α-glucosidase inhibitory activity. Using docking-based virtual screening approach, the potential binding affinity of 18 selected BFs to α-glucosidase was evaluated. The dynamic activity and stability of α-glucosidase-BFs complexes were then measured by molecular dynamics simulation (MDs). "Strychnobiflavone" showed the best score in α-glucosidase inhibition. Arg315 and Phe303 involved in the interactions of α-glucosidase-strychnobiflavone complex through cation-π and π-π stacking, respectively. Based on in vitro kinetic studies, it was determined that the type of inhibition of "strychnobiflavone" corresponds to the pattern of mixed inhibitors. Furthermore, details of the interactions between strychnobiflavone and α-glucosidase were performed by in silico secondary structure content analysis. The findings showed when "strychnobifone" binds to the enzyme, significant alterations occur in the enzyme conformation affecting its catalytic activity. In general, the findings highlighted the potential of "strychnobiflavone" as a promising candidate for the treatment of diabetes mellitus through α-glucosidase inhibition. Further in vitro and in vivo studies have to confirm the therapeutic benefits of "strychnobiflavone" in conformational diseases such as diabetes mellitus.


Assuntos
Biflavonoides , Diabetes Mellitus , Humanos , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Cinética , Biflavonoides/farmacologia , Glucose
5.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513292

RESUMO

Based on the literature data from 1973 to 2022, this work summarizes reports on spiro-flavonoids with a spiro-carbon at the center of their structure and how this affects their isolation methods, stereochemistry, and biological activity. The review collects 65 unique structures, including spiro-biflavonoids, spiro-triflavonoids, spiro-tetraflavonoids, spiro-flavostilbenoids, and scillascillin-type homoisoflavonoids. Scillascillin-type homoisoflavonoids comprise spiro[bicyclo[4.2.0]octane-7,3'-chromane]-1(6),2,4-trien-4'-one, while the other spiro-flavonoids contain either 2H,2'H-3,3'-spirobi[benzofuran]-2-one or 2'H,3H-2,3'-spirobi[benzofuran]-3-one in the core of their structures. Spiro-flavonoids have been described in more than 40 species of eight families, including Asparagaceae, Cistaceae, Cupressaceae, Fabaceae, Pentaphylacaceae, Pinaceae, Thymelaeaceae, and Vitaceae. The possible biosynthetic pathways for each group of spiro-flavonoids are summarized in detail. Anti-inflammatory and anticancer activities are the most important biological activities of spiro-flavonoids, both in vitro and in vivo. Our work identifies the most promising natural sources, the existing challenges in assigning the stereochemistry of these compounds, and future research perspectives.


Assuntos
Benzofuranos , Biflavonoides , Humanos , Flavonoides/farmacologia , Extratos Vegetais/química , Benzofuranos/química , Anti-Inflamatórios/farmacologia
6.
Ultrason Sonochem ; 98: 106491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37379745

RESUMO

In this study, the deep eutectic solvent based ultrasound-assisted extraction (DES-UAE) was investigated for the efficient and environmentally friendly extraction of Selaginella chaetoloma total biflavonoids (SCTB). As an extractant for optimization, tetrapropylaminium bromide-1,4-butanediol (Tpr-But) was employed for the first time. 36 DESs were created, with Tpr-But producing the most effective results. Based on response surface methodology (RSM), the greatest extraction rate of SCTB was determined to be 21.68 ± 0.78 mg/g, the molar ratio of HBD to HBA was 3.70:1, the extraction temperature was 57 °C, and the water content of DES was 22 %. In accordance with Fick's second rule, a kinetic model for the extraction of SCTB by DES-UAE has been derived. With correlation coefficients 0.91, the kinetic model of the extraction process was significantly correlated with the general and exponential equations of kinetics, and some important kinetic parameters such as rate constants, energy of activation and raffinate rate were determined. In addition, molecular dynamics simulations were used to study the extraction mechanisms generated by different solvents. Comparing the effect of several extraction methods on S.chaetoloma using ultrasound-assisted extraction and conventional methods, together with SEM examination, revealed that DES-UAE not only saved time but also enhanced SCTB extraction rate by 1.5-3 folds. SCTB demonstrated superior antioxidant activity in three studies in vitro. Furthermore, the extract could suppress the growth of A549, HCT-116, HepG2, and HT-29 cancer cells. Alpha-Glucosidase (AG) inhibition experiment and molecular docking studies suggested that SCTB exhibited strong inhibitory activity against AG and potential hypoglycemic effects. The results of this study indicated that a Tpr-But-based UAE method was suitable for the efficient and environmentally friendly extraction of SCTB, and also shed light on the mechanisms responsible for the increased extraction efficiency, which could aid in the application of S.chaetoloma and provide insight into the extraction mechanism of DES.


Assuntos
Biflavonoides , Selaginellaceae , Solventes , Biflavonoides/farmacologia , Solventes Eutéticos Profundos , Simulação de Acoplamento Molecular
7.
Food Chem Toxicol ; 178: 113879, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301500

RESUMO

BACKGROUND: Cyclophosphamide use has been associated with increased oxidative stress in cells and tissues. Quercetin's antioxidative properties make it of potential benefit in such conditions of oxidative stress. OBJECTIVE: To assess quercetin's ability to mitigate cyclophosphamide-induced organ toxicities in rats. METHODS: Sixty rats were assigned into six groups. Groups A and D served as normal and cyclophosphamide control and were fed standard rat chow, groups B and E were fed quercetin supplemented diet (100 mg/kg of feed), while those in groups C and F were fed quercetin at 200 mg/kg of feed. Groups A-C received intraperitoneal (ip) normal saline on days 1 and 2, while D-F received ip cyclophosphamide (150 mg/kg/day on days 1 and 2). On day 21, behavioural tests were carried out, animals were sacrificed and blood samples taken. Organs were processed for histological study. RESULTS: Quercetin reversed cyclophosphamide-induced decrease in body weight, food intake and total antioxidant capacity, and increase in lipid peroxidation (p = 0.001), It also reversed derangement in levels of liver transaminase, urea, creatinine and proinflammatory cytokines (p = 0.001). Improvement in working-memory and anxiety-related behaviours were also observed. Finally, quercetin reversed alterations in levels of acetylcholine, dopamine and brain-derived neurotropic factor (p = 0.021); while reducing serotonin levels and astrocyte immunoreactivity. CONCLUSION: Quercetin shows significant ability to protect against cyclophosphamide-induced changes in rats.


Assuntos
Biflavonoides , Quercetina , Ratos , Animais , Quercetina/farmacologia , Citocinas , Astrócitos/metabolismo , Ratos Wistar , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ciclofosfamida/toxicidade , Estresse Oxidativo , Encéfalo/metabolismo , Neurotransmissores
8.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175435

RESUMO

Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.


Assuntos
Antineoplásicos , Biflavonoides , Selaginellaceae , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Biflavonoides/química , Extratos Vegetais/farmacologia , Selaginellaceae/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Disponibilidade Biológica
9.
Food Chem ; 420: 136113, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054519

RESUMO

Biflavonoids are a kind of polyphenol compounds with numerous biological functions. However, the potential inhibitory activities of biflavonoids on α-glucosidase are yet unknown. Here, the inhibitory effects of two biflavonoids (amentoflavone and hinokiflavone) on α-glucosidase and their interaction mechanisms were explored using multispectral approaches and molecular docking. The results showed that the inhibitory activities of biflavonoids were much better compared with monoflavonoid (apigenin) and acarbose, and the order of inhibition ability was hinokiflavone > amentoflavone > apigenin > acarbose. These flavonoids were noncompetitive inhibitors of α-glucosidase and showed synergistic inhibition effects with acarbose. Additionally, they could statically quench the intrinsic fluorescence of α-glucosidase, and form the non-covalent complexes with enzyme primarily through hydrogen bonds and van der Waals forces. The binding of flavonoids changed the conformational structure of α-glucosidase, therefore impairing the enzyme activity. The findings suggested that biflavonoids could be considered as potential hypoglycemic functional foods in diabetes therapy.


Assuntos
Biflavonoides , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Acarbose , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Apigenina , Flavonoides/química
10.
Biochim Biophys Acta Biomembr ; 1865(4): 184137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746312

RESUMO

The effects of naringenin and the biflavonoids amentoflavone and tetrahydroamentoflavone on select bacterial lipids (carotenoids, fatty acids, and menaquinones) and membrane fluidity based on Laurdan generalized polarization were investigated. For this purpose, the pigment-forming food-associated microorganisms Staphylococcus xylosus (DSM 20266T and J70), Staphylococcus carnosus DSM 20501T, and Micrococcus luteus (ATCC 9341 and J3) were studied. The results suggest an envelope stress response by microorganisms due to flavonoids and an employment of adaptive mechanisms using carotenoids, fatty acids, and menaquinones. The flavonoid monomer naringenin impacted carotenoids, fatty acids, menaquinones, and membrane fluidity. Naringenin significantly influenced the carotenoid profile, particularly by an increase in the relative proportion of 4,4'-diaponeurosporenoic acid in Staphylococcus xylosus. Amentoflavone caused changes mainly in the membrane of Micrococcus luteus and decreased the menaquinone content. Tetrahydroamentoflavone mainly affected the carotenoids in the investigated strains. The noticeably different CCS value of tetrahydroamentoflavone compared to naringenin and amentoflavone revealed further insights into the structure-dependent effects of flavonoids. This study provides valuable insights into the response of pigment-forming food-associated microorganisms to naringenin, amentoflavone, and tetrahydroamentoflavone, which is important for the targeted and safe application of the latter as natural preservatives and useful for further research on the mechanisms of action.


Assuntos
Carotenoides , Flavonoides , Vitamina K 2 , Ácidos Graxos
11.
Life (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36836918

RESUMO

Neurological disorders are becoming more common, and there is an intense search for molecules that can help treat them. Several natural components, especially those from the flavonoid group, have shown promising results. Ginkgetin is the first known biflavonoid, a flavonoid dimer isolated from ginkgo (Ginkgo biloba L.). Later, its occurrence was discovered in more than 20 different plant species, most of which are known for their use in traditional medicine. Herein we have summarized the data on the neuroprotective potential of ginkgetin. There is evidence of protection against neuronal damage caused by ischemic strokes, neurotumors, Alzheimer's disease (AD), and Parkinson's disease (PD). Beneficial effects in ischemic strokes have been demonstrated in animal studies in which injection of ginkgetin before or after onset of the stoke showed protection from neuronal damage. AD protection has been the most studied to date. Possible mechanisms include inhibition of reactive oxygen species, inhibition of ß-secretase, inhibition of Aß fibril formation, amelioration of inflammation, and antimicrobial activity. Ginkgetin has also shown positive effects on the relief of PD symptoms in animal studies. Most of the available data are from in vitro or in vivo animal studies, where ginkgetin showed promising results, and further clinical studies should be conducted.

12.
Biopharm Drug Dispos ; 44(2): 157-164, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840704

RESUMO

The aim of this study was to investigate the effect of biflavonoids in Ginkgo biloba leaves on tacrolimus metabolism. First, the inhibitory effects of five main biflavonoids (amentoflavone, sciadopitysin, ginkgetin, isoginkgetin, bilobetin) in G. biloba leaves on tacrolimus metabolism were investigated in vitro in human liver microsomes (HLM), and the concentration-dependent inhibition was further calculated. Then the time-dependent inhibition activities of five biflavonoids were studied and the drug interaction was studied in Sprague-Dawley (SD) rats. Finally, the molecular mechanism of inhibition was explored by molecular docking. The results of in vitro incubation in HLM showed tacrolimus metabolism was strongly inhibited by amentoflavone, ginkgetin, and bilobetin, whose IC50 value was 5.57, 3.16, and 5.03 µM, respectively. The time-dependent inhibition of the three above biflavonoids at 50 µM was 33.47%-50.89%. In the in vivo study in rats, the AUC0-t and Cmax of tacrolimus increased 3.8-fold and 2.5-fold after oral preadministration with amentoflavone. The molecular docking results showed that the inhibitory effect may be related to the formation of hydrogen bonds. The results showed that long-term combination of G. biloba leaves and tacrolimus may cause drug-drug interactions. This study provided theoretical and experimental basis for rational drug use in clinical practice.


Assuntos
Biflavonoides , Ratos , Humanos , Animais , Biflavonoides/farmacologia , Ginkgo biloba/química , Tacrolimo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Folhas de Planta/química
13.
Phytochemistry ; 207: 113584, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36603655

RESUMO

The absolute configurations of the known but unusual spiro-flavostilbenoids found in the bark of Yucca schidigera Roezl ex Ortgies, were determined by applying time-dependent density functional theory simulation of electronic circular dichroism spectra. The absolute configurations obtained were as follows: (2S,3R) for yuccaol A, yuccaol D and yuccalide A; (2S,3S) for yuccaol B, yuccaol C and yuccaol E; (2S,3S,2'S,3'S) for gloriosaol A; (2S,3R,2'S,3'R) for gloriosaol C; (2S,3S,2'S,3'R) for gloriosaol D; (2S,3R,2'S,3'S) for gloriosaol E. These findings indicate that the compounds are all biosynthetic derivatives either of (2R)-naringenin and trans-resveratrol or of trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene. In contrast, gloriosaols are direct derivatives of yuccaols (note that substituting by stilbenoid changes the absolute configuration of C-2 naringenin carbon to 2S). A putative mechanism for their biosynthesis is proposed taking into account key aspects of regio- and stereoselectivity. Yuccaol B and gloriosaol A showed in vitro moderate inhibitory effects against acetyl-/butyrylcholinesterases (AChE/BChE) with IC50 values of 43/81 and 45/65 µM respectively. The selectivity index values calculated from the IC50 values of BChE and AChE were 1.9 and 1.4. Molecular docking simulations showed their interaction with the peripheral anionic site of human AChE and the catalytic site of the human BChE.


Assuntos
Flavanonas , Yucca , Humanos , Simulação de Acoplamento Molecular , Resveratrol
14.
Plant Physiol Biochem ; 195: 275-287, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652849

RESUMO

The pericarp of fruit can be differentiated into endocarp, mesocarp, and exocarp. To explore the differences in gene expression and metabolites in different tissues of the pericarp, the fruits of sumac (Toxicodendron vernicifluum) were separated into endocarp and mesocarp-exocarp. The metabolites and transcriptome of exocarp-mesocarp and endocarp of Toxicodendron vernicifluum were analyzed by HPLC-QTOF-MS/MS and RNA sequencing, respectively. A total of 52 phenolic compounds were identified, including 3 phenylpropane derivatives, 10 urushiol compounds and 39 flavonoids. The exocarp-mesocarp contained more urushiol compounds and flavonoid glycosides while the endocarp contained more biflavonoids, such as rhusflavone and dihydromorelloflavone. The characteristic component of endocarp was rhusflavone and the characteristic component of exocarp-mesocarp was urushiol (triene). Most of the genes involved in flavonoid synthesis pathway were upregulated in endocarp compared with exocarp-mesocarp and positively correlated with the content of flavonoids. The candidate genes related to the synthesis of components of flavonoid glycosides and biflavonoids were screened. Metabolomic and transcriptomic analyses provide new insights into the synthesis and distribution of flavonoid glycosides and biflavonoids in the fruits of Toxicodendron vernicifluum.


Assuntos
Biflavonoides , Rhus , Toxicodendron , Flavonoides/genética , Flavonoides/metabolismo , Toxicodendron/genética , Toxicodendron/metabolismo , Rhus/genética , Rhus/metabolismo , Biflavonoides/genética , Biflavonoides/metabolismo , Glicosilação , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Fenóis/metabolismo , Transcriptoma/genética , Glicosídeos/metabolismo , Frutas/genética , Frutas/metabolismo
15.
J Biomol Struct Dyn ; 41(4): 1510-1525, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34996336

RESUMO

A mini survey was employed in the search of herbs and spices which people believe could prevent them from contracting COVID-19. Phytochemicals which have been earlier implicated for the bioactivity of the afore-mentioned herbs and spices were identified through literature search. The phytochemicals were then subjected to pharmacore modelling, molecular docking and molecular dynamics simulation in order to identify phytochemicals that could serve as inhibitors of 3-Chymotryprin-like protease and RNA dependent-RNA polymerase of SARS-CoV-2. The drug-likeness and toxicity profile of the phytochemicals were afterwards predicted via ADMET studies. The mini survey showed ginger, garlic, bitter cola, as the lead-herbs which could find application in anti- COVID-19 therapy. Literature search revealed 27 phytochemicals were implicated for bioactivity of these herbs. Of these 27 phytoconstituents that were docked with 3-chymotrypsin-like protease and RNA dependent-RNA polymerase, the constituents of bitter cola had lower docking scores than other phytochemicals. MD simulation results showed that Garcinia biflavonoid I displayed less comformational changes and the better binding free energy. Also, the garcinia biflavonoids had relatively safe ADMET predictions. Hence, Garcinia biflavonoids and some other constituents of bitter cola could be further modified so as to obtain safe pharmaceutical intervention for the COVID-19 challenge.Communicated by Ramaswamy H. Sarma.


Assuntos
Biflavonoides , COVID-19 , Garcinia kola , Humanos , RNA Polimerases Dirigidas por DNA , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacóforo , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases , RNA , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Garcinia kola/fisiologia
16.
J Biomol Struct Dyn ; 41(13): 5915-5945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35848354

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic COVID-19 disease that affects human respiratory function. Despite the scientific progression made in the development of the vaccine, there is an urgent need for the discovery of antiviral drugs for better performance at different stages of SARS-CoV-2 reproduction. The main protease (Mpro or 3CLpro) plays a pivotal role in the life cycle of the virus, making it an attractive target for the development of antiviral agents effective against the new strains of coronaviruses (CoVs). In this study, a series of apigenin-based natural biflavonoid derivatives as potential inhibitors of coronaviruses 3CLpro was investigated by in silico approaches. For this purpose, the molecular docking was performed to analyze the interaction of the natural biflavonoids with SARS-Cov-2 main protease and for further investigation, docking to the 3CLpro of SARS-CoV and MERS-CoV. Based on docking scores and comparison with the reference inhibitors (ritonavir and lopinavir), more than half of the biflavonoids had strong interactions with the residues of the binding pocket of the coronaviruses 3CLpro and exhibited better binding affinities toward the main protease than ritonavir and lopinavir. The top biflavonoids were further explored through molecular dynamics simulation, binding free energy calculation and residual energy contributions estimated by the MM-PBSA. Also, drug likeness property investigation by Swiss ADME tools and density functional theory (DFT) calculations were performed. The results confirmed that the 3CLpro-amentoflavone, 3CLpro-bilobetin, 3CLpro-ginkgetin, and 3CLpro-sotetsuflavone complexes possess a large amount of dynamic properties such as high stability, significant binding energy and fewer conformation fluctuations. Also, the pharmacokinetics and drug-likeness studies and HOMO-LUMO and DFT descriptor values indicated a promising result of the selected natural biflavonoids. Overall findings indicate that the apigenin-based biflavonoids may inhibit COVID-19 by significant interactions in the binding pocket and those results can pave the way in drug discovery although the effectiveness of these bioactive compounds should be further validated by in-vitro and in-vivo investigations.Communicated by Ramaswamy H. Sarma.


Assuntos
Biflavonoides , COVID-19 , Humanos , Peptídeo Hidrolases , SARS-CoV-2 , Simulação de Acoplamento Molecular , Biflavonoides/farmacologia , Apigenina/farmacologia , Simulação de Dinâmica Molecular , Lopinavir , Ritonavir , Endopeptidases , Antivirais/farmacologia , Inibidores de Proteases
17.
J Biomol Struct Dyn ; 41(14): 6845-6856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36002285

RESUMO

Pancreatic cancer is an aggressive disease with a high death rate and is difficult to treat. This disease, in the most cases, is asymptomatic until it progresses to an advanced stage. Therefore, the search for bioactive molecules is urgent to combat pancreatic cancer. Then, this work analyzed the interaction potential of agathisflavone and amentoflavone molecules against the HIF1 target using the ADMET, molecular docking, and molecular dynamics simulations. More recent drug-likeness filters that combine physicochemical and physiological parameters have shown that high polar surface area (TPSA > 75 Å2) drives biflavonoids out of the toxic drug space of Pfizer dataset. Regarding the pharmacokinetic descriptors, it was possible to notice that Amentoflavone showed a better order of passive cell permeability (Papp = 8 × 10-6 cm/s) and better metabolic stability, biotransformed by aromatic hydroxylation reactions by the CYP3A4 isoenzyme on the human liver, that favor its hepatic clearance. The molecular docking and molecular dynamics simulations indicated the high interaction potential and stability between the ligands analyzed (highlighted the amentoflavone molecule), respectively. The MM/GBSA calculations showed that the amentoflavone ligand registered the highest ΔG binding value of -32.6957 kcal/mol with the HIF1 target. Then, this molecule may be used as a potential inhibitor of pancreatic cancer. In this perspective, the present work represents an initial step in the virtual bioprospecting a pharmacological tool for treating of pancreatic cancer.Communicated by Ramaswamy H. Sarma.

18.
Phytomedicine ; 108: 154508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332384

RESUMO

BACKGROUND: Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear. PURPOSE: In this study, we focused on the TME to determine whether TBESD and Delicaflavone could restore anti-tumor immune response. METHODS: 4T1 tumor-bearing immunocompetent BALB/c mice and T cell-deficient nude mice were used to examine the effect of TBESD on T cell-mediated immunity in vivo. Multi-parameter flow cytometry was conducted to evaluate the impacts of TBESD on TME. Primary cells, including murine CD8+ T cells, tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were prepared to investigate the modulatory activities of TBESD on immune cells. It was further determined whether Delicaflavone or Amentoflavone, two typical functional biflavones from TBESD, mediated those effects of TBESD. Finally, the impacts of TBESD and Delicaflavone on Jak1/STAT6 signaling pathway were explored via western blot. RESULTS: We found that TBESD significantly reduced 4T1 tumor growth in immunocompetent BALB/c mice, but not in nude mice. This effect was associated with the regulation of TME, shown as an increase in functional T cells and M1 phenotype TAMs (M1-TAMs), and a decrease in M2 phenotype TAMs (M2-TAMs), monocytic-MDSCs (M-MDSCs) and regulatory T cells (Tregs) in TBESD-treated BALB/c mouse 4T1 tumors. It was found ex vivo that TBESD restrained the viability and immunosuppressive properties of M2-TAMs and M-MDSCs, especially for the loss of arginase-1 expression. Additionally, TBESD re-educated M2-TAMs to an M1 like phenotype. Further investigations determined that Delicaflavone predominantly mediated the immuno-modulatory activities of TBESD both ex vivo and in vivo. Finally, Delicaflavone and TBESD blocked Jak1/STAT6 signaling pathway in M2-TAMs and MDSCs. CONCLUSION: The present study suggests Delicaflavone as a potent natural inhibitor of M2-TAMs and MDSCs, which fills the gap in knowledge on the immuno-modulatory effects of TBESD and Delicaflavone, and could have translational implications to improve the efficacy of cancer immunotherapy.


Assuntos
Neoplasias , Selaginellaceae , Animais , Camundongos , Camundongos Nus , Linfócitos T CD8-Positivos , Células Mieloides , Camundongos Endogâmicos BALB C , Imunidade , Terapia de Imunossupressão , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365320

RESUMO

Toxoplasmosis and cancer are serious worldwide diseases, and the available drugs cause serious side effects. Investigation for new alternative therapies from natural sources is now an increasing concern. Herein, we carried out, for the first time, an in vitro screening of Cycas rumphii Miq. leaves for toxoplasmocidal effect, using Viruluent RH Toxoplasma gondii, and cytotoxic activity against HEPG-2, HCT-116 and HELA cancer cell lines using MTT assay. Among the tested extracts, the ethyl acetate fraction was the most effective against T. gondii, with an EC50 of 3.51 ± 0.2 µg/mL compared to cotrimoxazole (4.18 ± 0.01 µg/mL) and was the most potent against the tested cell lines, especially HEPG-2, with an IC50 of 6.98 ± 0.5 µg/mL compared to doxorubicin (4.50 ± 0.2 µg/mL). Seven compounds were isolated from the ethyl acetate fraction by extensive chromatographic techniques and fully elucidated using different spectroscopies. Compound (7) is an undescribed 4', 4''' biapigenin di-C-glucoside, which showed a strong cytotoxic activity. Four known biflavonoids (1, 2, 4 and 5) in addition to a phenolic acid ester (3) and a flavonoid glycoside (6) were also isolated. Compounds (1, 3 and 6) were reported for the first time from C. rumphii.

20.
Phytochemistry ; 204: 113436, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36130673

RESUMO

Plants of the Cephalotaxus genus are rich in structurally diverse and naturally bioactive components, while limited studies have been reported for Cephalotaxus oliveri. Two undescribed flavonolignans and four undescribed biflavonoids, as well as thirteen known compounds, were isolated from the twigs and leaves of C. oliveri. Their structures were characterized by spectroscopic data analysis, and the absolute configurations were determined by electronic circular dichroism (ECD) calculations. All the isolated compounds were assayed for their neuroprotective activity against hydrogen peroxide (H2O2)-induced SH-SY5Y cell injury. All six undescribed compounds were effective to some degree, and umcephabiflovin B, apigenin 5-O-α-L-rhamnopyranosyl-(1 â†’ 2)-6″-acetyl-ß-D-glucopyranoside, and apigenin 7-O-ß-D-glucoside exhibited good neuroprotective activity. Umcephabiflovin B protected SH-SY5Y cells against H2O2-induced neurotoxicity by repressing oxidative stress and apoptosis and by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-response element (ARE) pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...